ビジネス貢献するためのエンジニアリングの話をデブサミでしてきた #devsumi
Nintendo switchの初期不良を引き当てたので、ゼルダをやるために開けておいた予定がなにもすることなくなってしまったのでブログを書いた。私のswitchは今頃京都にあるでしょう。
Developers Summit 2017 でコンテンツ委員しつつ登壇もしてきた
もともとは、デブサミオーガナイザの鍋島さんからコンテンツ委員としてお声がけ頂き、今回はコンテンツ委員という立場でデブサミに関わっていました。 そのため、コンテンツ委員が登壇とか自作自演感甚だしいので自分が登壇するつもりはまったくなかったのですが、GuildWorks -ギルドワークス-の市谷さんから越境をテーマに株式会社ヴァル研究所の新井さんと自分の3人でやりませんかとお誘いを受け、以下で登壇することに。
「新規事業が対峙する現実からエンジニアリングを俯瞰する」
www.slideshare.net
新規事業が対峙する現実というものを、
- ビジネスモデル
- ビジネスフェーズ
- ビジネス仮説検証プロセス
- 予算計画のリズム
として、そこからエンジニアリングを俯瞰して見てみるという構成になっております。 基本的に以前書いたブログ プロダクト開発を内製化やアジャイル化する際のどこからはじめるかの勘所の話 #postudy - @i2key のBlog、新規事業のグロース期を支えるエンジニアリングについて - @i2key のBlogの焼き直しに近いイメージになります。簡単にスライドの補足を以下に書いていきます。
リーンスタートアップとスクラムの全体像
新規事業における顧客開発プロセスやリーンスタートアップの仮説検証サイクル(BMLループ)、またスクラム開発をひとつにまとめるとこのようになります。一旦、ビジネスがどういうフェーズで進んでいて、そのために自分たちのエンジニアリングはどう関わるのかというポイントで全体感を頭に入れておくと見通しが良くなると思います。結局はプロダクトバックログ(PBL)に入ってくるものの源流はビジネスフェーズにおける仮説検証内容になるので、そこからエンジニアリングが見えるようになるとエンジニア側から提案が出来るようになったりします。例えば、GitFlowでやっていたが、GithubFlowに変えたい。だからエンジニア工数を一部そっちの改善に割きたい。とビジネス側に提案したとしても意味不明すぎて議論にならないと思いますが、現在、Releaseブランチの運用において、複数の機能追加が合流してからリリースする流れになっており、他の機能追加の実装速度に引っ張られて他の機能もリリース出来ない状況になっている。学びに対するリードタイムが増えているため、個別に出来上がったタイミングでリリースできるようにしていき、学びに対するリードタイムを最小化したい。と提案してみるとか。そこら辺については、リソース効率とフロー効率の話で簡単に言及いたします。
ビジネスモデルからエンジニアリングを俯瞰する
いろいろなビジネスモデルがあるなかで、それらのパターンを網羅して理解するにこしたことないのですが、エンジニアとして一番簡単な方法としては、どこで売上が発生しているかを見極めることだと考えています。
- エンジニアの書いたコード上で売上がたつパターン
- エンジニアの書いたコード上以外で売上がたつパターン
エンジニアの書いたコード上で売上がたつパターン
ここでは成果課金広告モデルを例としてあげています。例えば旅行予約サイトで、ユーザーが宿の予約をとると、クライアントの宿主様から予約に応じて広告費が支払われるようなモデルです。これを画面遷移レベルで見てみると、サービスのトップ画面に流入したユーザが、検索条件入力→検索結果の一覧画面→詳細画面へと進んでいき、最後に予約ボタンを押すような流れになるかと思います。更にコードレベルで見てみると、最終的には、if(isBooked)条件内の処理が実行されることで予約が成立し、そこで売上が発生することになります。要するにif(isBooked)ロジック内に流れてくるユーザ数を最大化すること=画面のUI改善つまりはコード改善そのものがファネル通過率の向上、CVRの向上=売上の向上につながる構造になっています。
整理すると、エンジニアによるプロダクト改善が売上目標に直接寄与するため、エンジニアがこのサービスの成長のエンジンになりやすいです。そして、エンジニアのビジネス貢献が可視化しやすいということは、数値目標を持ったプロダクトチームがじゃんじゃん改善サイクルを回すと売上に貢献できるという良いサイクルがつくりやすいです。言い換えると、アジャイルとか超導入しやすい座組(結果が売上で出る)になります。また、サービスの開発を外注依存のような組織が内製化をはじめる場合は、こういうビジネスモデルのものから着手していくと成果が出やすい部分になります。 キラキラして見えるようなエンジニア文化がある会社のビジネスモデルを見てみると、こういうモデルのパターンが多いように感じます。エンジニアが競争力直結なのでそりゃエンジニアの待遇がよくなるはず。逆に営業が競争力直結なビジネスなのであれば、営業が最も働きやすい構造になるかと思います。
エンジニアの書いたコード上以外で売上がたつパターン
ここでは純広告モデルを例としてあげています。例えば、広告枠をアプリとして提供しているけれどもあくまで枠(及び期間)の固定金額でユーザーのコンバージョンの有無に関係なくクライアントにお支払いただくようなものになります。例としてあえて、前述と同じマッチングモデルで説明しているため若干苦しい部分はありますがご了承ください。このモデルの場合、画面遷移的に、サービストップ画面に流入したユーザが最終的に詳細画面に到達し、予約のようなコンバージョン行動を取ったとしても売上は発生しません。クライアントからは出広料として既に固定額でお金をお支い頂いているからです。そのため、コードレベルでみても、if(isBooked)条件内の処理が実行されたとしても売上は発生しません。ここが「エンジニアの書いたコード以外で売上がたつ」と表現している理由になります。つまりは、UI改善等のプロダクト改善をエンジニアリングで行っても売上には数値として効果が直結はしない構造になっています。
とは言え、エンジニアリングが何も貢献していないのかというと、そうではありません。営業が売る場合の顧客単価あげる(クロスセルやアップセル)ための商品開発を行い貢献することが出来ます。しかしながら、ここらへんの貢献についてエンジニアがビジネス貢献をうまく説明出来ない、もしくはビジネス側が理解してくれないと、関係性が歪んでいきエンジニアはQCD目標のみに極端にフォーカスされていく場合があります。
エンジニアのビジネス貢献が可視化しにくいとどうなるかというと、トラブルだけが目立つようになります。そして、できて当たり前(減点主義)のパラダイムになっていき、エンジニアはコスト削減や生産性向上のようなビジネス指標から程遠い目標設定になります。結果的に、QCDSの制約の雁字搦めになるので、エンジニア側は壁を作りディフェンシブになりだします。本来、俊敏に仮説検証回したい目的に反して、組織がスローダウンしていくことになります。放置していると、社内なのに受発注の関係性になってしまいます。
そうならないために、ビジネス側・エンジニア側が共通の目標を持ち、それぞれの貢献が可視化できるようにする必要あがあります。そこでポイントなのはその目標に対して、それぞれが結果に影響を与えられるレベルで管理することです。エンジニアリングで直接影響を与えられるビジネス指標は何かをビジネス側と一緒に検討し合意形成していくことになるかと思います。いわゆるKPIツリーやOKR等がそこらへんに当たるかと思います。
ビジネスフェーズからエンジニアリングを俯瞰する
ここでは、ビジネスフェーズからエンジニアリングを俯瞰します。フェーズと言っているのは顧客開発プロセスでいうところの、顧客発見→顧客実証→顧客開拓→組織構築、ランニングリーンでいうところの、ProblemSolutionFit→ProductMarketFir→Scalingをさしています。
顧客発見フェーズ(Problem Solution Fit目指す)
深い課題を抱えた顧客はいるか、その課題の解決策は妥当か、その結果、独自の価値提供が出来るかというポイントで検証していくことになります。本当のところは細かいプロセスがありますが、すごくざっくり言うと、ビジネス指標としての例としては、継続率を見たりします。継続しているということは、このサービスは顧客の課題を解決し続けているから顧客はこのサービスを使い続けるということが出来るからです。ここでターゲットになるユーザーは基本的にアーリーアダプターなので、ある程度のことは許容してくれるので、当たり前品質や性能品質にはこだわらず、魅力的な品質のみに特化したMVP実装をしていくことになります。MVPも検証したい仮説に応じて必要最低限のスコープが変わっていくことがポイントです。ここでの必要最低限は、「課題解決可能かどうかを検証するための必要最低限」になります。
顧客実証フェーズ(Product Market Fit目指す)
このフェーズでは、プロダクトがマーケットにフィットするかを検証することになります。言い換えると、顧客は本当に買ってくれるのか、コスト構造に無理が無いかを見ていくことになります。具体的には、顧客獲得コスト(CAC: customer acquisition cost)<顧客生涯価値(LTV: Life time value)が成立すること。この際のエンジニアリングとして求められる品質レベルは、最低限の売れる状態。MVPの定義の必要最低限が今度は「売れる」にかかります。そのため、最低限の性能品質、と当たり前品質が必要になります。
顧客開拓(Scaling)
顧客開拓フェーズでは、今までアーリーアダプター対象だった製品を一般のユーザまで広げていくことになります。そのため、今までより広いユーザセグメントに売れることが要求されます。競合よりこの製品を選んでもらう必要があるので、アップセルやクロスセルに向けた性能品質や当たり前品質が求められていきます。 また、このフェーズになると既にユーザが多くついていることになりますが、そのような状況下において製品をつかって仮説検証を継続することになるため、インフラ要件としては、既存ユーザに影響を与えずに仮説検証が出来るような仕組みが必要になってきます。具体的に言い換えると、既存ユーザと新規ユーザを分けて検証するためのコホート分析の仕組みや、セグメントに応じて機能を出し分けるようなA/BテストやFeatureFlagの運用等です。そして、それらを支えるビルド、デプロイ、モニタリングのエコシステムになるかと思います。
いわゆるDevOps系のプラクティスですね。
ビジネスフェーズにおけるエンジニア像
前述の各フェーズを乗り越えていくのに際して、上記のようなエンジニア像が見えてきます。顧客発見フェーズにおいては、エンジニアといえどもソリューション片手にユーザインタビューに行くこともあります。エンジニアという枠に縛られずにマルチロールで動けるような人材がパフォーマンスを発揮しやすいと思います。顧客実証フェーズにおいては、ビジネス目標を達成するために、自ら手段を考え、その結果必要であればサーバのアルゴリズムを弄るし、フロントへの改善が必要であればiOSでもAndroidでも弄るようなフルスタックな人材が必要になるかと思います。なんせ、領域特化した専門家だけを集めるような余裕はまだないので。余談ですが、ここらへんはなぜフルスタックが良いのかについて別途スライド上の別のページでも取り上げていますが、待ちのムダや引き継ぎによるムダが省けて結果的にフロー効率がよくなる(顧客からのフィードバックを得るまでのリードタイムが少なくなる)という効果もあったりします。
話をもどしますと、つぎの顧客開拓フェーズにおいては、広げていくカスタマーセグメントに応じて必要な性能要件や品質要件が上がっていきます。仮にtoC商品をtoB商品へのアップセル目的で上げていく場合、それ相応のセキュリティ要件が出てきたりもします。そのような場合には、やはり専門性を持ったエンジニアが必要になってきます。各分野のプロフェッショナルがそれぞれの目標を達成すべく貢献していくような構造になります。その中でも、特定領域の神のようなエンジニアも競争優位としても必要になると思います。
リソース効率とフロー効率について
エンジニア目線だけでいると、どうしても稼働率をベースに考えてしまいます。しかしながら対峙している新規事業においては、如何に早く顧客から学びを得るかがポイントになってきます。そうなってきたときに、「効率が良い」という言葉の意味を考えないといけません。
- 稼働率という意味で効率が良い(リソース効率)
- 顧客から学びを得るまでのリードタイムにおいて効率が良い(フロー効率)
- まとめて同時に複数のことはせずに一つの機能の実装のみをチームで行っている。場合によっては、仕事がなくて遊びが発生してしまう人もたまにいる。稼働率そいう側面だと効率が悪いが、リリースをして学びを得るという側面だとリードタイムは短く効率が良い。
顧客から早く学びを得るにはまずはリソース効率ではなくフロー効率を重視したほうが学びのない期間を作らずに済みます。
リソース効率からフロー効率に変える方法のひとつとして「マルチタスクをやめる」ことがあげられます。それを図解したものが以下になります。
これは極端な例ですが、A機能、B機能、C機能のすべての機能追加タスクがそれぞれ15人日かかる場合。同時進行するとすべてのリリースまでのリードタイムは3週間になります。逆に一つずつ終わらせていくと、A機能は1週間、B機能は2週間、C機能のみが3週間というリードタイムになります。AとCが仮に相関が強かった場合は、Aの結果を踏まえてCの開発をやめることも検討できます。このように、同時にやることで様々なムダが生まれていたりします。現実はこんなシンプルではないですが、「一個流し」を意識することでいろいろなムダが除けるので、リリース計画においてもビジネス視点を持つことは重要だったりします。
他にはペアプロとかもリソース効率ではなくフロー効率を上げに行くプラクティスだと認識しています。モブプログラミングなんて完全にフロー効率に振り切っている。重要なのは、二人で別々の機能の仕掛中在庫を作るのではなく二人で1つの在庫を早く出荷することに重きをおいていること。また、副次効果として、知識の流通が同時に行われるため、1機能について2人の仕様理解者が同時に生まれる。つまりは引き継ぎによるムダが減るという様々な効果があったりもします。
さいごに
基本的にスライドを見てもらえれば内容はわかるとは思いますが、補足部分をブログに記載させていただきました。 また、今回は貴重な機会を頂き、市谷さん、新井さん、鍋島さんありがとうございました。 登壇を誘って頂いた市谷さんがFouderをしているDevLoveというコミュニティは自分にとって大きな転換ポイントの一つで、かつて参加したHangarFlightというイベントの余りにもの厨二感に良い意味で感化され、絶対この場に発表者として帰ってくると誓い、その後のDevLove現場甲子園(東日本大会)と名を変えたイベントに登壇。そこでの内容を評価していただき現場甲子園の日本シリーズに登壇。そして、その内容をコピペしてデブサミ2015公募に応募。公募なぜか通る。偶然にベストスピーカー賞いただく。夏サミの登壇依頼いただく。スピーカーつながりとかでいろいろな人と知り合いになる。困ったときに助けてとお願いすると、色々教えてもらえるようになる。アウトプットするといろんな人がインプットくれるようになる。そんな中、デブサミ2017のコンテンツ委員の打診いただく。面白そうだからのっかる。こんな講演ききたいなあという思いの説明用にポエムをブログに書いてみる。そういう話してみませんかと今回の登壇の話へとつながる。登壇するために、適当なこと言えないので、いろいろな1次ソース文献を読み漁る。更に理解が深まる。という流れの最初の一歩目はDevLoveというコミュニティとの出会いにあったと思っています。自分はPapanda氏に越境をenergizeされたひとりです。まことに….感謝ッ…!!!
新規事業のグロース期を支えるエンジニアリングについて
このブログは Recruit Engineers Advent Calendar 2016 - Adventar の12/7の記事になります。
はじめに
現在、新規事業開発部門にて、いくつかのチームの開発リーダーをしていまして、その中でチームの目標を決める中でグロースフェーズにおける開発チームの直近のやるべきことを洗い出したので、アドベントカレンダーのネタにさせていただきます。
前提として、本ポストで対象になる新規事業は下記の投稿における分類で言うと「エンジニアの書いたコード上で売上が立たないビジネスモデル」になります。そのため、エンジニアリングでKPIを向上させ売上に寄与するような一般的なグロースハッカー的な動き方についてはスコープ外です。詳しくは下記リンクをご一読ください。 i2key.hateblo.jp
現在のビジネスステージ
上記はAsh Maurya氏のRUNNING LEANとSteve Blank氏のSTARTUP MANUALにおけるビジネスフェーズを図にしたものになります。はじめは、MVPを作ってはぶっ壊し、捨てて、またMVPを作ってはぶっ壊しの繰り返しでProblem Solution Fit(PSF)前は過ごすかと思います。可能な限り作らないで検証できたほうがよいのでエンジニアもインタビューに行ったりもします。そして、PSF後あたりから、Product Market Fit(PMF)させるためのもう少し真面目()な製品づくりが始まります。本ブログでのスコープ(赤い帯の部分)はPSF後、PMF目前もしくはその後のScaleフェーズにおける仮説検証を支えるエンジニアリングについて言及させていただきます。どうしてもPSF前のアーリーステージは作っては壊すの繰り返しなので、カウボーイスタイルになってしまっても仕方がない部分はあると思い。
上図は狩野モデルという品質モデルになります。狩野モデルでは魅力的品質、性能品質、当たり前品質に分けてそれぞれの品質特性を説明しています。PSF前のアーリーステージでは、顧客が存在すること、その顧客が深い課題を抱えていること、そして、それを解決することで得られる価値(ユニークバリュー・プロポジション(UVP))が実証できればよいので、基本的にアーリーアダプターを狙って検証しにいきます。アーリーアダプターは、当たり前品質は別になくても気にしないセグメント(脳内で補完してくれる)なので、UVPの実証にフォーカスします。
しかしながら、次のフェーズのPMFを狙うには、そもそも商品が売れなくてはならないため、当たり前品質も必要になってきます。魅力的品質のみに特化したMVPだけで売れるなんて幻想です。サービスがうじゃうじゃ出ている昨今において、シンプルなMVPだけで済むなんてそんな簡単な話ではありません。MVPが何に対する「必要最小限」なのかは検証対象によって変わることを理解するのが大事です。仮に、「本当に売れるか」を検証したい場合は、競合の機能も当たり前品質になってしまっているのであれば、必要になります。PMFでLTV(Life time value) > CAC(Customer Acquisition Cost)の検証をするために、価格設定の検証をするのであれば、まずは買ってもらわないといけないので同様に当たり前品質が必要になります。各フェーズ毎に検証したいことに応じた機能設計が必要です。 そして、ここらへんからチームメンバの人数も増えるし、ユーザー数もある程度増えてきており、今までのように簡単に機能追加やリリースができなくなってきます。しかしながら、仮説検証はまだまだ続くので、その速度をスローダウンさせることなく、むしろ高速化させていかねばなりません。
グロース期を支えるエンジニアリングの目指すべき状態
前述の状況をまとめると、このフェーズでは、当たり前品質を確保しつつ、ユーザーが既にいる状態で売り物で仮説検証をしていくことになります。そのため、エンジニアリングとしては、既存のユーザーベースを壊すことなく安全に仮説検証が出来るしくみを作ることが重要です。そしてトライするスピードをスローダウンさせることなく更なる仮説検証の高速化を目指すことになります。(仮説検証フェーズにおいて、どれだけ効率よく学べるかが最重要であるためです。)そこで、単純化するための仮説検証の速度と質という2つの軸に分けて考えます。
- 仮説検証の速度を最大化
- 手っ取り早いのが、デプロイ回数/日をチームの目標におき、それを高速で回せる状態に持っていく。しかしながら2週間に一回リリースなのであれば、10営業日に1回なのでデプロイ回数は0.1/日である。
- 仮説検証の質を最大化
- ニーズに合致していないものを高速で排出しても、高速うんこ製造機になるので、仮説の質を上げるためにエンジニアができる取り組みも行う。
- 既存のユーザーベースを壊すことなく安全に仮説検証の実験を行うための仕組みづくり。
仮説検証の速度を最大化
すごくラフですが以下のような開発プロセスのバリューストリームマッピングを例にします。LTはリードタイムを表しています。リードタイムとはプロセスが作業を受け付けてから、下流のプロセスに渡すまでの時間になります。PTはプロセスタイムで、作業者がひとつの作業項目を完了するのにかかる時間です。そして実際に価値が作り込まれているのがこのプロセスタイムになります。実際のところは[PT = Value Add Time(VAT) + ムダ ]であり、 本当に価値を作っている時間はその一部になります。そのため、前述のデプロイ回数/日を増やすのであれば、この図の赤い部分をまずは改善することになります。
デプロイ回数/日を目標におくと何がおきるか
- デプロイまでの赤い部分のリードタイムやプロセスタイムを減らしたくなる。VAT=0のプロセスは価値がないので消し去りたくなる。
- 最初はエンジニアリングでムダの部分を所々自動化する
- しかし技術でどうこうだけではすまなくなる
- プロセス改善することになる
- 複数の要件を同時に実装していくと、タスク切り替えのムダが発生することがわかり、バッチサイズ(このフローに流す作業のサイズ)を小さくすべきことに気づく
- インフラ担当とかアプリ担当とかの作業の引き継ぎにもムダがあることがわかる
- チーム間等の意思決定がボトルネックになる
- チーム内で担当を決めるのをやめて、なんでもやるほうが待ち時間によるムダがなくなり、はやいと感じ始める。
- 結果的にチーム外でも同じことがいえ、組織改善まで波及する
- そのために、付随してアーキテクチャの見直しまで発生する
- それに合わせて責任と権利の所在が変わる
- 継続的デリバリーの組織的な母体が出来上がる
以下はちょっと古いですが、以下が丁度Facebookがデイリーリリースに切り替わったころの周辺の各種プラクティスのマッピングになります。こういうものも参考にしてもよいと思います。結果的に、最近のDevOpsプラクティスとかぶるとは思いますが。 Facebook's Trunk Based Development (take 2) から引用
そして、以下が自分が担当しているチームでのやるべきことをリストアップしたものになります。これを元に、最上位のレイヤー(デプロイ回数)をチームの目標としています。箇条書きで醜くて申し訳ありませんが、そのままコピペしておきます。
仮説検証の速度の最大化(チーム目標:デプロイ回数/日)
- プロセスタイムの削減
- リードタイム削減
- 組織改善
- クロスファンクショナルチーム
- 部門間の引き継ぎのムダを省く
- 部門間の待ちのムダを省く
- フルスタックエンジニア
- チーム内の個人間の引き継ぎのムダを省く
- クロスファンクショナルチーム
- プロセス改善
- 大きなバッチサイズから小さなバッチサイズへ
- タスクを管理するのではなくペースを管理する
- カンバン、スクラム
- タスク切り替えのムダを省く
- リリースカレンダー
- WIP制限
- スコープボックスではなくタイムボックス
- プル型のタスク管理
- カンバン、スクラム
- タスクを管理するのではなくペースを管理する
- 自動化
- 直接顧客価値を作らない作業(Value add time = 0)の最小化
- 継続的インテグレーション
- テストコード維持(悪化させない)
- インフラコードを維持(悪化させない)
- デプロイ自動化
- 分析・集計自動化
- 各種マーケ施策の自動化
- マーケ担当者がエンジニアに依頼して、エンジニアが作業をするようなケース。同様の依頼が複数回発生したら運用を自動化する。
- 特定のセグメントに対して通知やメール送信をしたい。
- 特定のセグメントに対してキャンペーンコードを発行したい。
- 引き継ぎによるムダ/待ちによるムダの排除
- 営業担当者からの依頼のケースも同様
- マーケ担当者がエンジニアに依頼して、エンジニアが作業をするようなケース。同様の依頼が複数回発生したら運用を自動化する。
- 直接顧客価値を作らない作業(Value add time = 0)の最小化
- 大きなバッチサイズから小さなバッチサイズへ
- 組織改善
- 安定運用
- 未然防止
- セキュリティ
- システムモニタリング
- 自動復旧
- 事後対応
- トラブル対応フロー
- 障害レベルの切り分けロジック
- etc
- トラブル対応フロー
- 未然防止
仮説検証の質を最大化
前述のバリューストリームマップを同様に用いて説明します。仮説検証の質という観点で最も大事なのは、このプロセスのフローに投入する玉の質、つまりは仮説の質が良いことです。ニーズに合致していないものを高速で作れたとしてもゴミを生むだけで、しかもそれだけではなく、コードベースは肥大化していき機能が使われないどころか自分たちの生産性までも下げることになってしまいます。これはまさに余分な機能のムダになります。それを防ぐためにもエビデンスに基づく仮説構築の支援をエンジニアリングにて実施する必要があります。基本的には、各種分析基盤の実装です。また、各仮説検証の結果をパラレルで走っている検証の結果が混ざって濁らないような効果測定も必要です。
また、既存のユーザーベースを壊すことなく安全に仮説検証の実験を行うための仕組みづくりも必要です。具体的にはユーザーを任意のクエリや属性にてセグメントする仕組み、また、そのセグメントに対してリリース機能の出し分けをする仕組みが必要です。そしてそのセグメント毎に公開した機能単位で分析ができることが必要です。ここらへんの仕組みは最近ではSaaSを使えば大抵オールインワインで備わっています。これらの仕組みがある状況であれば、仮にリリース後に問題が起きた場合も、機能単位で切り戻しも可能になるため、欠陥によるムダ への対策にもなります。
以下に仮説検証の速度の最大化と同様に質に関するやるべきことの箇条書きをコピペしておきます。
仮説検証の質の最大化
- LEARNの質
- MEASUREの質
- 計測の基盤があること
- ダッシュボード
- ビジネス&システム
- BMLループの時間(学ぶまでのリードタイム)
- プロダクトバックログに起票されてから、検証されるまで
- BMLループの時間(学ぶまでのリードタイム)
- システム
- 各種システムパフォーマンス
- CPU/NETWORK/RESPONSE/etc
- ビルド時間
- 自動テスト時間
- デプロイ時間
- 各種システムパフォーマンス
- ビジネス
- ファネル分析
- 離脱率(or Churn Rate)
- P/S FITにおけるズレの側面
- ファネルに流すユーザの質に左右される
- エンジニアリングで改善可能な部分
- P/S FITにおけるズレの側面
- 離脱率(or Churn Rate)
- コホート分析
- カスタマーセグメント毎の各種数値
- 流入経路別の各種数値
- ノイズを排除し純粋にプロダクトの力を計測する
- 営業/マーケ獲得セグメント別の結果等
- ノイズを排除し純粋にプロダクトの力を計測する
- 流入経路別の各種数値
- リリースバージョン毎の各種数値
- 実装機能毎の各種数値
- カスタマーセグメント毎の各種数値
- Gross Revenue
- LTV/CACグラフ
- ユーザーセグメント毎のLTVとCACの関係性
- Churn rate
- その他各種KPI
- ファネル分析
- ビジネス&システム
- ダッシュボード
- 安全な検証環境
- 既存のユーザへの影響を最小化
- ユーザーをセグメントする機能
- ウェブコンソール上でSQLないしUIにて、特定の条件に関するユーザセグメントを作ることができる
- ユーザーをセグメントする機能
- Feature Flag
- ユーザーセグメントに対して機能の出し分けを可能にする
- Private Beta Test
- Dark Launch
- ユーザーセグメントに対して機能の出し分けを可能にする
- A/Bテスト基盤
- カナリヤテスト
- ブルーグリーンデプロイメント
- 既存のユーザへの影響を最小化
- 計測の基盤があること
- BUILDの質
まとめ
本ポストでは、便宜上バリューストリームマップの例で解説をしていましたが、本来は各チーム毎にバリューストリームマップを作成し、ボトルネックになっている部分を探し、解消することが大事です。例えば、ボトルネックじゃない部分をいくら解消しようが実は全体的には効果がないこともあります。そしてボトルネック解消には時には技術以外での解決策も必要であったりします。個人的には、TPSや制約理論を学ぶのが最も効果があると思います。そして、それらを意識しながら、下記を実現していくことになると思います。
- 当たり前品質を確保しつつ、ユーザーが既にいる状態で売り物で仮説検証をしていくため、エンジニアリングとしては、既存のユーザーベースを壊すことなく安全に仮説検証が出来るしくみを作ること
- トライするスピードをスローダウンさせることなく更なる仮説検証の高速化を目指すこと
以上です。
プロダクト開発を内製化やアジャイル化する際のどこからはじめるかの勘所の話 #postudy
本ポストは特に私が所属する組織の見解ではなく、私が今までの経験&自分がチームを作るときにチームの目標を考えたり、組織内にアジャイルを導入したり、組織内での開発チームの位置づけをどうするかなどなどを考えるときに意識していることですのであしからず。
内製化や、アジャイル化のビジネス上の効果を得やすい部分をビジネスモデルから考える
昨日、プロダクトオーナー祭り2016で「DevOpsとリーンスタートアップ時代のプロダクトオーナーシップ」というセッションでパネルディスカッションに登壇させていただきました。 postudy.doorkeeper.jp そこで内製化や、アジャイル化はどの部分からやるのがよいかみたいな話の流れかなにかで、「System of Engagementでなおかつ成果課金のようなエンジニアの書いたコード上で売上が立つモデルだとエンジニアリングが直接売上に寄与しやすいためビジネス価値を生みやすく座組が作りやすいです。仮にはじめての内製化やアジャイル化みたいなことをするのであれば、そういうところから始めるとよいです。」みたいな話を軽くしたのですが、あまりにも軽くしすぎたので補足をブログにしてきます。
System of Engagement(SoE) と System of Record(SoR)
ここらへんの議論については、最近、Ito Naoya さんがSoEとSoRの話をしてくださっていて、共通認識として広まってきてる感があります。掻い摘むと、顧客とのエンゲージメントを高めるためのシステム(SoE)と、記録のためのシステム、いわゆる基幹系システム(SoR)にわかれ、それぞれに応じて、適切なマネジメントスタイル、組織、方法論、技術選定、開発プロセスを取るべきであるという話になります。SoEかSoRかというわけではなく、それぞれの要素のグラデーションでバランスよく考えましょうという話ですね。
https://speakerdeck.com/naoya/system-of-record-to-system-of-engagement#5
しかしながら、もう一歩踏み込んで、更にビジネスモデルという切り口で見てみると、更に霧がはれていきます。
エンジニアの書いたコード上で売上が発生するようなビジネスモデル
例えば、SoEの中にトランザクション(従量課金モデル)の要素がある場合は、その部分から仮説検証型、アジャイル開発型としてトライすると良いと思います。 簡単に言い換えると、プロダクト上でユーザーが課金するもしくは、プロダクト上のユーザの行動によってクライアントからお金が支払われるようなモデルです。もっと、極端に言い換えると、エンジニアの書いたコード上でユーザーのコンバージョンが発生してお金が儲かるモデルです。この場合は、エンジニアが成長のエンジンになりやすいケースです。だってエンジニアのコード(UI、パフォーマンス、アルゴリズム等)が良ければ良いほどコンバージョンを生み、売上があがっていくので。 つまり、そのようなビジネスモデルのケースでは、数値責任をもったチームが仮説検証サイクルを意識してアジャイルに回すほうが売上貢献しやすいです。言い換えると、エンジニアのコードの改善が売上に直結寄与しやすい。これがビジネス価値をエンジニアが作り出していると言いやすく、説明責任を果たしやすいです。
この領域は、たとえば、ソシャゲとか、デーティングとか、ECとか、toC課金のモデルの多くであり、ネット系とかウェブ系と言われている部分の多くです。また、toBとかでいうと成果課金広告とか、アドテクとか、SaaSとかがそれになりますね。SaaSの場合は、チャーンレートが重要になってきます。または裏返しで継続率ですね。それが毎月の売上に直結します。
500StartupsのDaveが提唱しているAARRRモデルがありますがこれが一番イメージしやすいです。
これは勝手に私が書き換えたものですが、Churn(水漏れ)も追加しています。広告等でユーザーを獲得してきて、一定量がアクティベーションせずに離脱して、残りが継続利用してくれて、でもまた徐々に下に漏れていって、継続利用してくれるとどんどん売上が立っていってみたいな流れです。つまり、ここの水漏れをエンジニアリングで防ぐことでも、売上に直結させられます。本質的な継続率は、顧客の課題を解決し続けている必要があるのでそもそものサービスの価値の議論にはなるかと思いますが。まあ、つまりは、改善サイクル(リリースまでのリードタイム)が高速化するとビジネス価値を生みやすいということです。かつて言われていたグロースハッカーがまさに活躍する領域です。
ここからは妄想ですが、そのため、成果課金・従量課金・月額課金モデル等をベースとするエンジニアの書いたコードの上で売上が立つウェブ系なスタートアップ界隈やソシャゲ界隈などなどはアジャイルを採用することが多く、あわせてエンジニアの労働環境も良くしやすく、オフィスもエンジニア最適化されたり、エンジニアは好きなディスプレイ、マシン、キーボード、椅子で自由に働いている。そして給料も良いのでは。エンジニア達こそが競争力の源泉になるので。という構造になっている(なりやすい)かと思います。妄想ですが。
エンジニアの書いたコード上で売上が立たないビジネスモデル
それに対してSoEの中でも、逆に、エンジニアのコード上で売上が発生しないモデル。 例えば、営業が商品(製品、純広告、etc)を売ってその商談で売上が立つようなモデルとかだと、ある意味、成長のエンジンはエンジニアではなく営業力になる(スケーラブルかどうかの議論はおいとく)ケースが多いです。
ここでエンジニアが価値を出すポイントは、商品開発(パッケージソフト商品、純広告商品等)になるパターンが多いと思います。(営業支援ツール等のSoRなバックオフィス系は一旦省きます)
エンジニアリングは魅力的な売れる商品を作ることと、営業の顧客単価をどうあげるかに寄与するパターンになります。そしてエンジニアの開発した新たな商品によって顧客単価があがるのであれば、それは素晴らしい成果になります。例えば、顧客単価を上げるために、オプションプランで追加課金するような機能を追加するとか、SMB向け商品等でアップセルを狙うためにエンタープライズの大口顧客に売るために、エンタープライズ特化の機能を追加するとかになります。しかしながら、このモデルでは、定量的なエンジニアのビジネス貢献度が前述の従量課金モデル等に比べ見えにくくなってしまうため、アジャイル化する前にまずはエンジニアのビジネス貢献を定性的にでも見える化する必要があります。絶対やるべきです。 そのための一つのやり方としてAlignmentMapというものがあります。こちらもちょうどプロダクトオーナー祭りにて言及されている方がいました。 martinfowler.com
前述のトランザクション課金モデルだとKPIツリーを分解していけば、最終的にCVR改善等のプロダクトチームのエンジニアタスクに落ちやすいので、定量的にビジネス貢献度を出しやすいのですが、非トランザクション課金モデル、非SaaSモデルでも定性的にビジネス貢献を可視化することはこれで出来ます。これをやることで開発タスクがそれぞれどんなビジネス貢献に寄与するのかをエンジニア自身が把握することもできるし、ビジネス側も意味なさげに見える技術的負債の解消や性能改善等のエンジニアリングとビジネスの関係が見えるので色々やりやすくなります。AlignmentMapとか名前ついてますが、一般的な組織では当たり前のようにこういう構造化はしているとは思います。運用の仕方についてはリンク先を読めばわかるかと思いますので省略します。定期的にビジネスサイド、エンジニアサイド両方での振り返りを行い、一つのマップにマージして議論するのがポイントです。
SoEの各フェーズにおいて求められるエンジニアロールについて
また、前述のようなビジネスモデルでの切り口とは別の切り口で、内製化チームを作る場合、時間軸で見てみることも大事で、SoEのビジネスフェーズによって求められるエンジニアロールも変わってくるという話もしたので簡単にまとめておきます。ビジネスドメインによって差異はあるとは思いますので、あくまで考え方の一例として理解してください。
基本的には下記の図がすべてなのですが、説明しますと、初期ステージであればあるほど、なんでもやるよねという話です。MVPを作って実際のユーザーにインタビューしにいくかもしれませんし、営業にエンジニアも同行するかもしれません。そしてグロース期に入って、ビジネスコミットの強いフルスタックエンジニアは、グロースハッカーとして水漏れの補修をしながらKPIに寄与するエンジニアリングをしたりする。チーム自体がクロスファンクショナルであれば、別にフルスタックである必要はないと思いますが、フルスタックエンジニアであるほうが、リードタイムは少なくフロー効率は高いと思います。そして、P/M Fitを達成し、マーケにより流入を増やしたり、カスタマーセグメントを幅出ししたり、アップセル狙ったり、でトラフィックが増えてくるあたりで深刻な性能問題になやんだりします。ここらへんでは、今までの技術的負債をどうにかできるプロフェッショナル型のエンジニアが活躍してくると思います。
結果的に、午前のやっとむさんの発表に繋がったらしい。
最初はマルチロールエンジニア、グロース期にはフルスタック、その後はプロフェッショナルというのは、午前に紹介した開拓者、入植者、都市計画者と移っていく話につながってるみたい。そうすれば組織内でまわせるという話 https://t.co/ifb0pq6QE6 #postudy
— YASUI Tsutomu (@yattom) 2016年11月26日
まとめ
皆が置かれている文脈も違うため、すべてを包含してこうだとは言い切ることはできないのですが、伝えたかったこととしては、仮に内製化をはじめるとか、アジャイル化していくとか考えるときにどこから始めるとビジネス上の価値創出がしやすいか、成功確度が高いかをこういうふうに考えることも出来るよ、ということでした。 そして、その構造を理解した上で開発体制を組んだり、プロセスをきめたりすれば、よりエンジニアがビジネス貢献しやすい座組を整えやすくなるよという話でした。
そのため、自分がよくやるのは、例えば広告系なビジネスの場合であれば、営業資料があれば真っ先にそれを見せてもらったりします。そこで純広告を売っているのか、成果課金広告モデルなのかわかります。また、その比率も見ます。それでエンジニア組織のありかたを想像するキッカケになったりします。
別に今回記述した論理展開がすべての開発現場に当てはまるわけではないので、現場毎に自分たちのビジネスモデルと向き合い考える必要はありますが、こういう切り口でエンジニアのビジネス貢献というテーマで開発組織のあるべき姿を考えてみるのもよいのではないでしょうか。 こう考えることで、内製化すべきポイントはどこであるか、まずアジャイル化すべきポイントはどこであるか、エンジニアの評価制度にビジネス貢献度を入れるべきかどうかとか、色々考える際のとっかかりになると思います。
DevOpsはエンタープライズからスタートアップへの横恋慕 #devops #プロダクトマネージャー #leanstartup
DevOpsはエンタープライズのスタートアップへの憧れ
と、楽天の川口さんが言ってたなーなるほどなーと今になってしっくりきてたのでブログを書いてみる。んで、ブログ書くために、あれ?そもそもあってるっけと思いFacebookストーキングしたら違ってた。
"DevOpsはエンタープライズからスタートアップへの横恋慕" by 川口さん
と言われていた模様。うーむ、横恋慕のほうが味わい深い・・・。 そして、早速タイトルを修正した。先行きが不安だ。ちなみにかなり長めのポエムなので時間のないかたはそっと閉じて頂ければ。
自分自身が長いこと新規事業畑にいたこともありDevOpsへの関わり方として、エンタープライズな状況下(Dev部門、Ops部門、ビジネス部門、...and so on)においてDevOpsをしたというよりも、サービスをゼロから立ち上げ、グロースする中でのDevOpsという経験が強く、最近のDevOpsブームの前提が色々としっくりこないことがあったが、やっと先日のPoppendieck夫妻とMSの牛尾さんのバリューストリームマッピング研修に出たことで腹落ちした。実際はその研修の内容とはまったく関係ないのであるが、Maryの一切ブレないリーンの本質の部分に触れることで、よいキッカケをもらえたことに感謝している。
ちなみに私はDevOpsを以下のスコープ及びニュアンスで理解してる。勝手に理解してるだけなのでみんなの心の中のDevOpsを否定するつもりは微塵もない。TPSをみたり、リーンを学んだりでその流れでDevOpsを見てしまっているので、DevOpsというよりは、単純にリーンにバリューストリームを全体最適させる目線が強いかもしれないが。
- 広義
「コンセプトをキャッシュに変えるフロー効率及びリソース効率を最大化する一連の実践」 - 狭義
「DevOpsは高品質を保ちつつ、システムに変更をコミットしてから、その変更が通常の本番システムに組み込まれるまでの時間を短縮することを目的とした一連の実践である。」
(こちらはDevOpsの教科書という本での定義である)
DevOpsのスコープとリーンスタートアップの仮説検証サイクル
私自身が、リーンスタートアップスタイルの仮説検証型でずっと新規事業をやってきた流れが強いので、そこからDevOpsに光をあてて理解していくのがとっつきやすいと思い、このような図になっている。小さくてわかりにくいかもなので補足すると、図の下部にある○の連なりは、IDEAS->BUILD->PRODUCT->MEASURE->DATA->LEARNと書いてあります。よくあるリーンスタートアップでのBMLループである。
狭義と言った部分が、すごくざっくりいくと赤い部分(BMLループのBuild部分)で、広義といったのが青い部分(BMLループ全体)になる。同時に赤い部分はエンジニアが直接結果をコントロールできる範囲であり、青い部分は利用者・ユーザの行動を介すことで結果に不確実性が伴う部分でもある。リーンスタートアップ等の仮説検証を効率よく回すという目線でみると、赤い部分はあくまでもBuild部分の最適化であり(一部Measureも入ると思うが)やや、狭く感じる。やりたいことは青い部分の仮説検証サイクルの高速化である。ここが新規事業畑だった自分が感じた違和感だった。赤い部分だけをDevOpsとして最適化しても、結局のところは、仮説のスジが悪いことでゴミを作り続けて出荷するムダ、また、良いものを作ったとしても、マーケのミスでユーザに届かないというムダが生まれてしまうのである。
シード期やアーリーステージでのDevOps
開発部門、事業開発部門みたいなような組織デザインではなく、ハスラー、ハッカー、デザイナーのようなチームで始まるド新規なサービス開発の場合。自分たちの持ち出しもしくは会社であれば少額のバジェットで開始するにあたり基本的にバーンレートが重要になる。 思い込みによるフルスイングでバーンレートを最大化させることよりも、小さく仮設検証型でやり失敗を小さくして学び効率を最大化させ、バーンレートを下げるスタイルとしてリーンスタートアップがある。 つまりは、ゼロから何か事業、サービスを始める場合においてバーンレートを下げつつ学びを最大化させようとすると1つの手段として仮説検証型になることになる。(起業家の嗅覚でフルスイングして、大当たりするケースもあるので、これは個人の自由である。)
仮説検証ベースの場合、価値観として最小工数で最大の学びが得られることが大事とされるため、極論、作らない。作るとしても表面だけで裏側のアルゴリズムは人力で回すとかになる。それでユーザーが価値を感じれば(コンバージョンすれば、継続利用すれば)あとから実装すればよいのである。いわゆるMVPによる実証である。 そんな感じでシード期は過ごすわけで、そこでその価値観に染まると、徐々にユーザーが増え始めてきてアーリーステージになり、シリーズAの出資を受けるフェーズになった際にも、仮説検証がベースのエンジニアリングになっている。
例えば、ある新機能をリリースする場合、新機能のリリース日から使い始めたセグメントの継続率と、従来ユーザの継続率の比較をするケースがよくある。継続して利用されるということは少なからずユーザに何らかの使い続ける理由があるのである。つまりは、ユーザの課題をいずれかの形で解決している状態である。Problem-Solution Fit(PSF)といわれたりする。(余談ではあるが、結婚指輪のECをやるような場合は継続されると気まずいのでここはビジネスモデルによる部分ではある。)
そこで真っ先に入れることになるのがコホート分析である。
ここでのコホートは、新規利用開始日のコホートになっており、使い始めた日毎にユーザをセグメントしており、その毎日の継続率を示している。そのため、ユーザ獲得キャンペーン等を実施した日に他のリリース等の他のイベントを行わなければキャンペーンの本当の効果を測定できる。
しかし、この運用だと問題があり、毎回ユーザ全体に新機能をリリースすることで既存ユーザへの影響というリスクが発生する。毎回、機能追加が成果があるならよいものの大半は失敗する。そのため、最初は一部のユーザにのみリリースして実験したくなるのである。その結果フラグが必要になり結果的にFeature Flag運用になる。(既存と新規機能のA/Bテストの場合もある。) 結果として、自然とDevOpsのプラクティスとしての文脈ではなくFeature FlagやFeature Toggleベースの開発を行うのである。(ここでのFeatureFlagは本番へすべてのコードリリースの文脈ではなく、ユーザー毎の機能の出し分けON/OFF文脈である。) よくあるケースとしては、外部のSaaSを使うケースである。OSSもたくさんある。CookpadさんのChankoは有名である。他にはここらへんのサイトを見ておくとわかりやすい。 また、同時にユーザーのセグメント機能も実装することになる。そのセグメントに対してFeature Flagをオンにするために。 例えば、開発チームメンバだけに公開、次に、自社メンバ、次に、全体のユーザの数%のみとなる。 昨年度、協業して自分自身もエンジニアとして参画していた99designsでの実際のFeature Toggle運用はブログで公開されているので参考に載せておく。基本的にセグメント切りおよびオンオフはAdminコンソールにて行う。
また最近でいうとFirebaseがmBaasとして提供している機能郡とかも、非常に親和性は高い。
・Remote Config x Analytics(ユーザセグメント)で機能の出し分け
・上記結果をAnalytics(コホート分析)でセグメント単位で効果検証
https://firebase.google.com/docs/remote-config/
ここらへんのセグメント化 x 機能出し分けによる仮説検証は、アーリーステージにおいて、DevOpsのプラクティスとしてよくある各種自動化よりも先に実施される感覚がある。このフェーズであれば、部門もわかれておらずその場で会話すれば解決するようなピザ2枚状態だし、システムも重厚長大ではないため、そういう順序でも問題がないかはおいといて結果的に現場のオペレーションが回る。(重厚長大ではない状況で、先んじて諸々自動化しておくことが大事なのはわかっているが話が混ざるとシャープではないので振り切って話すことにする。また、現場の毎日が文化祭前夜感を経験している人にはビジネス価値 > 負債量産の状況はわかるはず。)
そういう意味で以下の牛尾さんのスライドにある主要なプラクティスとサブプラクティスの優先度がサービスをゼロからグロースさせてくると自然と一部プラクティスが逆転していたりする。DevOpsにこれをやれという絶対はないものの、通ってくる文脈によって導入するプラクティスの位置づけも優先度も変わるというのは当たり前といえば当たり前であるが面白く感じた。
https://docs.com/ushio-tsuyoshi/5912
アーリーステージでのエンジニアリングの優先度として、コードベースが複雑でなかったり、実験なので破棄することもあるため、細かい自動化による小さなムダの排除よりも、そもそも使われないモノを作らないことであったり、作ったものがちゃんとターゲットユーザに届く(認知される)ことであったり、ユーザが途中で離脱しないことであったり、そちらにパワーを割いたほうがトータルでムダが少なかったりするケースが多い。そこで、結果的にDevOpsとか意識せずFeature Flagだったり、仮説に基づく開発(運用環境でのテスト)が行われる。(サービスを安定運用させるために、自動スケーリングさせたり、パフォーマンス監視だったりは当たり前でやるとして。)
DevOpsが見る夢は、ワイワイやってたあの頃への回帰
最近DevOpsが語られるときには、エンタープライズDevOpsであり、基本的に負債や重厚長大なプロセスを持った組織の改善という文脈が多いが、そうじゃなくオーガニックに組織が成長していく過程だと上記のように、また違ったアプローチでDevOps(のようなものを結果的にやっていく)していくことになる。そこが個人的には今まで本やウェブ上の記事で感じていたギャップなのかもしれない。
冒頭にも書いたが、今回、Poppendieck夫妻の研修に参加し、組織やプロセス、技術に対してリードタイムを如何にさげるか、リソース効率ではなくフロー効率をいかに高めるかを考えるようになり、そこら辺がクリアになった。クロスファンクショナルチームとかスモールチームとかよく言われるがそれはあくまでフロー効率を最大化するための一つの手段なのである。
DevOpsが目指している本質は、「何かあったときに会議なんかせずに席の周りにみんな集まってその場で議論して進められてたあの頃に戻ろうよ」ということなんだなあと。 例えばアジャイル(スクラム)で"開発チーム"があの頃に少しは戻ったとしても、それだけだと不十分で、インフラ、ビジネスサイド、営業、みんなでワイワイやってたあの頃に戻りたいんだろうなあと。
まさに、"DevOpsはエンタープライズからスタートアップへの横恋慕"である。
結果的には「コンセプトをキャッシュに変えるフロー効率及びリソース効率を最大化する一連の実践」である。
あの頃に戻るためには、いきなり戻ろうとするのではなく、今まで作り込んできた組織構造上のムダ、アーキテクチャ上のムダ、プロセス上のムダ、そしてそれらが複雑に絡み合った状態をほどいていく必要がある。(そういうふうにエンタープライズ下でのDevOpsでは考えるようにしている。)
そこで一つの取っ掛かりになるのが、散々語られているがバリューストリームマッピング(VSM)による現状把握と改善である。
VSMによる改善を回すと、真っ先に現場レベルでできることは基本的に自動化であり、その次にボトルネックはどうしても組織構造に移る。
その文脈の中で、様々な記事や文献でいわれているように、以下のような組織、プロセス、アーキテクチャのリファクタリングが伴う。そのため、VSMによる改善活動を行う場合は、権限を持っている人の同席が必須である。
- 組織デザイン
- 権限をチームに与え、クロスファンクショナルでスモールチーム化:スタートアップ回帰
- 責任と自由(権利)について
- どこかは伏せるが自分が近くで見てきた例としては、売上を上げている単位のサービスでチームをわけて権限委譲&下記のマイクロサービス化をしていた事例がある。
- どこかは伏せるが自分が近くで見てきた例としては、売上を上げている単位のサービスでチームをわけて権限委譲&下記のマイクロサービス化をしていた事例がある。
- 権限をチームに与え、クロスファンクショナルでスモールチーム化:スタートアップ回帰
- アーキテクチャ
- スモールチームで回せるサイズ(例えばマイクロサービス):スタートアップ回帰
- どこかは伏せるがMSAにするのに15ヶ月かかってるのを見ていたりもするのでこれは大きな経営判断を伴う。
- どこかは伏せるがMSAにするのに15ヶ月かかってるのを見ていたりもするのでこれは大きな経営判断を伴う。
- スモールチームで回せるサイズ(例えばマイクロサービス):スタートアップ回帰
- プロセス
- 人による承認のようなゲート方式からパイプライン方式へ:スタートアップ回帰
- 人による承認のようなゲート方式からパイプライン方式へ:スタートアップ回帰
そして、その結果チームは本当の意味での継続的デリバリーを手に入れることになる。
以下は、昔、夏サミで発表したスライドであるが、このときの内容はDevOpsとしてではないが、太字部分は結局DevOpsプラクティスで得られる効果そのものを指していたりする。
http://www.slideshare.net/i2key/devsumi-natsumic7
「あのころ」に回帰したチームにおいて、プロダクトオーナー/プロダクトマネージャーはmini CEOである
クロスファンクショナルなチームにおけるチームの責務はサービスのグロースであったりビジネス上のKGI/KPIの達成であるため、組織体としてもスタートアップのような何かである。エンタープライズ型の重厚長大なプロセス、セクショナリズム、アーキテクチャ上の制約が仮になくなれば仮説検証を行うサイクルタイムは今までよりも早くなり、仮説を市場に問うリードタイムは最小化される。
それとともにプロダクトマネージャーの役割もスタートアップ帰りが起こる。DevOps関係なくそうだとは思っているが、DevOpsが機能しだすとより顕著である。 そして、馬田さんがPM = mini CEOとよくいっているがまさにそれである。
http://www.slideshare.net/takaumada/zero-to-product-manager
ここで一つ問題になるのが、お金である。 エンタープライズの場合、スタートアップのように都度資金調達していくスキームではなく、例えば、年次予算を組んで事前に計画を立て、その目標へのコミットとして翌年の予算が決まるモデルが一般的である。つまり、1年以上先の未来を予測&予測にコミットすることになる。計画が間違っていたとしても、その計画の達成率が評価になるのである。そこにはピボットは含まれないし、仮説検証による学びからの計画変更は加味されていない。結局、そこの年次予算のリズムが大枠のサイクルタイムになってしまう。 では、仮説検証型で細かくサイクルを回すためにはどうすれば良いか。 ここらへんは先日のバリューストリームマッピング研修にて、MaryやTomから簡単に説明があったり、やはりその後日のリーンエンタープライズの公園にてBarryも全く同様の話をしていたりで、要はBeyond Budgeting(脱予算経営)をしなさいというところだった。 (そんなこと簡単に言われてもさー。というのが正直なところではあるがそれだと当事者意識が低めなのでここでだけ言わせてもらう。そんなこと簡単に言われてもさー。)
かいつまんで説明すると以下である。
- 年次の予算モデルからの脱却
- 予算確保のための計画、予算調達、実行、振り返りが年次予算である場合、そのリズムになってしまう
- 大企業は中央集権な予算管理モデルが、意思決定をまとめて行いやすいため効率的に見えるが、不確実性が高い状況下におてそれはフロー効率を下げることになる。
- Beyond Budgeting(脱予算経営)
- 楽天の川口さんが昔ブログに簡単にまとめていてわかりやすい
- http://kawaguti.hateblo.jp/entry/20120315/1331798274
- Agile 2014 Closing Keynote: Beyond Budgeting でも語られていたようです
- https://www.infoq.com/news/2014/08/agile2014-keynote-beyond-budgeti
- 大企業内の新規事業組織とかはほかからの干渉をさけるため出島化することは多い。
しかしながら、現場レベルでも今すぐトライできるやりかたを考えたい。上記に比べるとミクロ視点すぎるため、全体最適とまではいけないが。要は、一旦確保したバジェットの中で如何にムダな金遣いを減らすか。確保したバジェットでできる仮説検証回数を最大化させるかがポイントである。お金の使い方のリーン化である。手前味噌ではあるが、有効なお金の使い方をするのに良いフォーマットがある。
http://www.slideshare.net/i2key/45-developers-summit-2015-devsumi-devsumib
これをもとに仮説検証で学びたいこととそれに対するコスト、期間を見てメンバは責任者に決裁を取ることになる。都度、実験に対して決裁を取るので、組織として年次で確保したバジェットを小分けにして使いやすい。組織の事情を全く考慮せず言っているのであくまで一例としてではあるが。
さいごに
なぜこのタイミングでこんなことを突然語りだしたかというと、世の中で語られているDevOpsがビジネス価値ガーとかいうものの、ビジネス価値までスコープにはいってないではないかという疑問であり、そこらへんの整理をしたかったからであったりします。一見、DevOpsはただのエンジニアリングに見えるものの、結果的には実はビジネス上の不確実性を小さく効率よく取り除き、赤い線の部分の活動の効率化が、しまいには青い線の効率化に昇華する部分をうまく言語化したかったものの、少しわかりにくかったかもしれません。Feature Flagなんて特に青い線の部分の大失敗を避けるインフラであったりします。エンタープライズの中でリーンスタートアップのような仮説検証型でビジネスリスクを下げつつやる場合は、それ相応のエンジニアリングが必要でそれがDevOpsというワードで括っているスコープである理解になります。
あとは、こんな話を交えて
プロダクトオーナー祭り2016 ※2016/11/29更新 プロダクトオーナー祭りでパネルディスカッションで下記の話をしました i2key.hateblo.jp
Regional Scrum Gathering Tokyo 2017 パネル: DevOpsとリーンスタートアップ時代のプロダクトオーナーシップ
にプロポーザルを出しているので投票してネ!という記事広告の目的もあるのである。 最後までおつきあいありがとうございました。
また、全体的に論点をシャープにするため、極端に表現している部分はあります。アーリーステージだって、自動化もするし、やらないわけではありません。両立させている素晴らしいスタートアップも新規事業組織もたくさんあります。というわけで、あくまでビジネスコンテキスト上での優先度として、どちらが最優先されるかという意味になっております。あしからず。
Scrumはじめるまえの本質的な部分の話 #agile #scrum
チームをスクラムにしたいのですが
とあるアプリの責任者に相談を受けた。 彼は自分のチームが改善フェーズにはいり一定のリズムでサービス改善したいためWF型からスクラム化したいらしい。 そこで、いきなり彼は「プランニングポーカーどうやるんですか」と聞いてきた。これは危ないと思った。
PO、SM、エンジニアの相互の信頼が一番大事。
信頼がポイント。それがない状態で始まると意味のない何かになりやすい。
最初にやるべき儀式は、プラクティスの勉強ではなく、 最終責任を取れるビジネス側ポジションの人が、「お互い80%くらいの確度でコミュニケーションしましょう」ということ。 お互いのガードを下げること。一蓮托生になること。
そして、「これの意味は、仮にPOが確度100%の画面ワイヤー等のドキュメントをエンジニアに渡せるのであればエンジニアも確度100%の見積もりを出せるけど、僕(PO)はそんな天才でもないので、80%の確度がやっとです。だからエンジニアの見積もりについても80%程度の確度のもので良いと思っています。だって僕からのインプットがクソだとそもそも正確に見積もれないですよね。これはよく言われている「見積もりはコミットじゃない」ということと同じになります。」とつなげる。
これがない状態でいきなりスクラムごっこが始まるとどうなるか。エンジニア(の契約形態による)がディフェンシブになってしまう。見積もりの精度を求められてしまうことになれているエンジニアはどうしてもバッファを見込んでしまう。これは本当の見積もりではない。つまりはチームが本当のパフォーマンスを出せなくなってしまう。
だから、「ビジネス責任者」から80%ルールの宣言をする。それがまず第一。ガードを下げる。信頼してもらう。
各プラクティスはその後の話である。
チームのためと思ったことがチームの生産性を下げることがある
また、「信頼」に起因して、いきなり個人のベロシティを計測することはやってはいけないという話をした。よくスクラム入門書みたいなものには、ベロシティガーみたいなのが書かれているが、これの意味するところはチームの生産性の可視化でよいことではあるもののあるリスクを含んでいる。また、更にそれで個人の生産性を評価しだすチームなどもある。はげしく危険。
信頼がない状況でやると、何が起きるか。
見積もりのサバ読みが始まる。もしくは、品質の低下が始まる。 自身のベロシティが自身の評価につながると思うと、多めに見積もったほうが生産性は高いマンになる。もしくは、見積もりよりも時間が掛かりそうな場合に、低品質でもおわりにしてしまえという考えが出てくる。 しかし、一概に必ずそうなるとはいっていない。
アジャイルの根底にはチームへの信頼というものがある。 その信頼が足りていないときに、これがおこるのだ。 「チームから解雇されるかもしれない不安」 「守るといっても結局まもってくれないのではないかという不信感」 「なんだかんだ見積もりにコミットになってしまうのでしょうという諦め」
そして、個人のベロシティ競争になってしまうと、さらに、相互のメンバ間の助け合いもおきなくなっていく。人のこと助けても自分のベロシティあがりませんし。と。
個々の生産性を可視化して改善して高めることでチームの生産性を高めようという思いが、逆にチームの生産性も品質も下げるという結果を招いてしまうのである。 (ラプラス憲章みたいなものですね。最初は人類の希望だったのに。それがこじれて戦争になってしまうという。)
なので、ベロシティを見るのはチームの単位まで。 皆の信頼関係があるような次のステップのチームであれば別に自由でよいけど。
みんながその働き方が好きであるわけではない
とはいえ、スクラムの本質は可視化であるため、どうしてもついてこれなくなる人は出てくる。みんながその働き方が好きであるわけではないことを理解しないといけない。ドライな世界だが、チームで成長していけるので、機能すればチームの生産性はスプリント毎に上がる。
そんなお話をした。
本当につたえたかったこと
この手のチームの開発プロセスの話は文脈(ビジネスモデル、商流、体勢、etc)の影響を強くうけるのでかならずこうであるとは言えないが、プラクティスを追うのではなく、人間の力学として、どういう判断をすると、どういうことがチームで起こるかということを考えるのが大事である。
リーンスタートアップで失敗する18のパターン
ローレムに提供した下記ネタの原文を自分の活動ログとしてこっちにも残しておきます。(マルチポスト的でごめんなさい) 余裕があればもっといっぱい色々書きたいことあるので追記していきます。多分。やっぱしないかも。
リーンスタートアップで大事なことは、リスクを最小化するという価値観や考え方だ。一方Webや書籍ではどうしても教科書的な内容が多い。その様な環境において、初学者はどうしてもそこに書いてあるやり方ばかりにフォーカスしてしまう。結果「これはリーン」「これはリーンでない」というどうでもいい議論になりがちだ。本記事ではそこに一石を投じたいと思う。 リーンスタートアップを方法論として捉えてる人へ・・・うまくいきゃどうやったっていいじゃん!
本記事は4/16に開催されたリンスタ関ヶ原での発表「LEAN STARTUP アンチパターン」から抜粋した物です。
1. キャンバス依存パターン
リーンキャンバスは分かりやすい。不確実性の高い事業を進める上でのチェックポイントが羅列されているからだ。ツールとしての分かり易さは時に副作用をもたらしてしまう。それはキャンバス以外のところにもリスクがあるという事に想像力が働かないという事だ。事業/チーム/自分/会社の置かれている状況によって、リーンキャンバスには出てこない目に見えないリスクは様々だ。
リーンキャンバスには出てこないが、後々問題になる目に見えないリスクを以下に列挙する。
- 誰とはじめるか
- メンバーの熱量の差異(チームの持続可能性)
- 自分だけでその領域でやっていけるのか
- チームがその課題を解決する必然性はあるか
- チームにその課題を解決することは出来るのか
- 誰から出資をうけるべきか(ステークホルダーを誰にするか)
社内でやるべきか、社外でやるべきか - 誰がボトルネックになるか(決裁マラソン、上長、部下、チーム)
- 市場や技術動向の状況と、投入のタイミング
その領域は、仮説検証を短サイクルあるいは低コストで回せるか
(SaaSなどのクラウドを利用して検証が可能か) - 法的、規約的、業界の慣例的なルール違反をしていないか
不確実なことを全て洗い出そう。そしてリスクが高い順に検証していけばよいのだ。
2. そもそもFounder/Market Fit、Founder/Product Fitしていないパターン
起業家の例 photo by kevin, pakutaso
Founder/Market Fitはファウンダーが対象のマーケットを良く知っている状態。Founder/Product Fitはファウンダーがそのプロダクトをよく使う層という状態を言う。起業家がマーケットにフィットしているか、プロダクトにフィットしているかは、2つの側面において重要だ。たとえば上図の起業家がそれぞれ「パーソナルコンピューターを作る」となった場合にどうなるだろうか。
スタート地点ですでに不確実性がより少ないという側面
業界を知っていれば、以下点においてスタート時点で有利である。
- 参入するドメイン出身で業界事情に明るい
- 特定領域での専門性を持っている
- その領域において人脈がある(メンター候補/アーリーアダプター候補)
- 業界慣例、文化に詳しい(今後仮説検証を進めていく上で有利)
- そのドメインに対してとても深い不を感じている
ファウンダーの持続性という側面
ファウンダーの熱量は持続性に影響し、それは成功事例を生み出す事につながる。心に問うてみてほしい。
- たまたま、そこに課題を発見しちゃったから、はじめたの?
- なぜ、それをやっているの?
- あなたがやる必然性は?
- その業界の人と同じ温度感で課題を感じているの?
- もしくは、あなたはそれを毎日つかうの?
ファウンダーに熱量がなければ新規事業は継続しない。なぜなら新規事業は大抵失敗するもので、心が折れるからだ。会社の新規事業組織から成功事例が生まれにくい理由の一つである。
企業内新規事業部門の多くは、「はい、あなたは明日からこの部署ね。そして新規事業を立ち上げて下さい。」というような人事異動により新規事業に取り組みはじめることが多いかもしれない。そのため、個人差はあれど、野生の起業家に比べ命を懸ける度合いが違う。成功するまでやり続ける力が維持しにくく、続かないのだ。新規事業は、熱量ある人がやるべきで、会社組織としては、そういった人を常に補充し続ける必要ある。
リクルートの新規事業組織の例。熱量のある人を補充し続ける仕組み
リクルートの新規事業では、新規事業部門の人間が新規事業を行うのではない。全社的に新規事業に意欲のある人間が自ら起案し、採択された案だけが新規事業としてスタートを切る仕組みをとっている。
3. MVPでシンプルにやらなきゃだめだよ!だって、ネットの記事にそうかいてあるしパターン
シンプルなMVPでやらないとダメという風潮がある。本やネットの記事によるキラキラした事例に洗脳されている。もちろんこうした例がダメなわけではない。最初はシンプルでよいと思う。しかし競合がいる、あるいは現れた時、シンプルなMVPで仮説検証できるだろうか。物事を伝えるときはあえて極論から、こうした事例で説明される事が多いが、現実はそうはいかない。本に書いてあるような綺麗なMVPを目的化してしまう事がある。あくまで目的は仮説を検証することだ。
ソリューションの一部やニーズの確認さえできればよい場合、シンプルなMVPで足りるかもしれない。しかし競合がいる場合や、マネタイズの検証を行いたい場合は慎重な検証が必要になるだろう。シンプルなMVPではプロダクトの本来の姿を被験者に想像力で補ってもらう部分が不確実性として残ってしまう。こういったフェイズでは競合や代替手段の「当たり前品質」をしっかり満たした上での検証が時には必要になる。MVPならぬMSP(Minimum Sellable Product:お金を稼げる最小限のプロダクト)という概念で考えると分かり易いだろう。
4. 石橋叩きすぎパターン
小さい仮説検証ばかりで先に進めないパターン。仮説検証で100%の確証を得ようと考えていないだろうか?
「いつまでインタビューをすればいいのですか?」
この様な質問を受けるが、答えは「なんとなくわかるまで」だ。100%の理解はサイエンスの度が過ぎる。アート20%、サイエンス80%を意識するのがよい。常に顧客を向いてフィードバックを得れていれば、間違った時の軌道修正も素早くできるはずだし、そもそも素早く仮説検証し失敗を重ねるのがリーンだ。
80%の肌感についてもう少し触れると、10人ぐらいインタビュー続けると次の人の言うことが想像できる様になってくる。そしたら80%来た、と思ってよいだろう。
5. シングルタスクパターン
なぜか一個づつやるパターン。1つずつ仮説検証しなくてはいけないと刷り込まれていないだろうか。幾つかの仮説を同時に走らせておいた方が、1つがダメだった時のリスクヘッジになる。チームであればそれが出来る。ロジック的に依存性がなく並列検証可能なら、同時に仮説検証することも検討する。
6. 誰そのペルソナ、本当にいるのパターン
ペルソナなんかよりもむしろ、課題をもっていて解決してあげたい実在する人の氏名を書くほうが効果的。最初の救う誰かを具体的に氏名で決める。ペルソナは存在しない可能性があるが、実在する人間なら少なくとも1人のユーザーが存在する事になる。
デモグラで切れるようなセグメントの課題なんて既に大抵解決されているし、その様なペルソナに陥るのはソリューションありきだから。ソリューションから逆算して「当てはまる人誰かな〜」と考えた結果、ありもしないペルソナが出来上がるのだ。
7. その人お金払わないよねパターン
カスタマーを誰に置くのか。誰からお金をもらうのか。当たり前だがお金をもらう人を軸にしないと事業は継続しない。成功する前に終わってしまう。
事実私自身、誰からお金を取るかを考えずに始め、最終的にマネタイズが出来なくて終わった経験がある。お金を払う人をカスタマーセグメントに置いて考えた事がなければ、今すぐ考えた方がよい。
8. 何か言っているようで何も言っていないパターン
トートロジー(英語:tautology, ギリシャ語:ταυτολογία)とは、ある事柄を述べるのに、同義語[1]または類語[2]または同語[3]を反復させる修辞技法のこと。同義語反復、類語反復、同語反復等と訳される。関連した概念に冗語があり、しばしば同じ意味で使われることもある。また、撞着語法はトートロジーの反対の技法である。 — wikipedia
VP(バリュープロポジション)とCS(カスタマーセグメント)の例。次の様な書き方をしているケースは驚くほど多い。
もう1段踏み込んで考えるとこうなる。
9. キャバクラでの我々パターン
インタビューでよくあるパターンだが、話を盛り上げようとし過ぎて回答者が気分を良くし、自分の(想像による)意見を言い出し、かつそれが止められない状況。潜在ニーズを調査するようなインタビューの場合、事実だけを吸い上げたいはずだ。想像による発言では仮説検証には使いにくい。場合によっては誤った判断材料となってしまうだろう。 そうなる前に、どうにかして流れを変えるしかない。未来の話はいらない。過去の事実を集約し、それを横断的に分析、共通項を抜き出すというやり方を意識するのだ。
10. リーンスタートアップ、僕、好きじゃないのでパターン
好きとか、嫌いとかそういう話じゃないと思うけど・・
新しい何かを組織にインストールする際には付き物だが、組織でリーンスタートアップを初めてやろうとすると、何と戦ってるのか分からないような人がしばしば出てくる。個人的には、サービスが上手く行けばなんでも良いので、別にリーンこだわる必要は無いと思っているが、全てを別物として捉えている人たちは本質が見えていないので危険である。
一つの課題に対して、光の当て方が違うだけ
AARRRからみたリーンスタートアップ
1人でも継続して利用してくれているということが大事。継続して利用してくれているということは、顧客の課題を解決していることだ(想定していない課題を解決してることもあるが)。AARRRで言うRetentionは、ユーザーがプロダクトに価値を感じている状態、つまりエンゲージしている状態でP/S Fitの指標となる。
制約理論からみたリーンスタートアップ
鎖全体の強度とは、最も弱い輪っかの強度と同等である。最も弱い輪っかを見定め、そこを直せば鎖全体の強度が高まる。その概念と同じで、最もリスクの高い部分を割り出し、検証していく。1つ不安要素を潰したら、次に高いリスクを割り出し検証する、というのを続ける。
リスクの高い部分が鎖の強度が弱い箇所となる
狩野モデルからみたリーンスタートアップ
魅力品質 : UVPであり、他に真似されない部分。
性能品質 : あればあるだけあった方がよい部分。
当たり前品質 : P/S Fit時にはいかに小さくできるか考え(コストの削減)、マネタイズ検証時にはいかに最大化できるかを考える。
Feature Toggleからみたリーンスタートアップ
Feature Toggleは、いろんな実験的な機能を、部分的にサービスにリリースするボタンの様なもので、今や多くの巨大なサービスでは当たり前の様に使われている。これは1つ1つの実験的機能がMVPに値し、最初は開発チームだけに公開。次に、全体の5%のユーザだけに公開、さらに次は10%といった具合に、仮説検証を本番環境でユーザーに対して実施する手法。大きくリリースして大きく失敗してしまうリスクを最小化できる。
ポール・グレアムの言葉からみたリーンスタートアップ
自分が欲しいものを作れ — ポール・グレアム
自分が欲しいものを作れば、自分がまずは使い始めるはずである。少なくとも課題を持ったユーザーが1人はいる状態からスタートするのだから、F/P Fitであり、失敗しにくくなる。
11. エンジニアが上手くフィットしないパターン
エンジニアが作ることのみにコミットしている場合、仮説検証のやり方についてこれない場合がある。素早く検証したいのに、豪華な何か、高品質な何かを創りだしてしまい、検証が思いのほか回らなくなる。エンジニアには「QCD-ScopeでQ抑えめでD重視」と伝えたり、エンジニアに刷り込まれている昔ながらの価値観、優先順位を壊すことが必要。さらに必要に応じて権力・責任のある人に言ってもらうなどが必要だろう。 状況に応じてQCDとスコープの優先順位が変わることを伝え、その上で、この働き方についてこれるエンジニアとやる。
サービスのフェーズによって変わる、エンジニアに求められるコミット
アーリーステージは特に視野を広げる
参考 :
- エンジニアもユーザーに会いに行こう 小さく始める大規模スクラム
- エンジニアもデザイナもヒアリングする Incrementsの文化を作る方法
12. 割り込みが・・・パターン
13. いくつも打ち合わせが・・・パターン
14. リモートワークが・・・パターン
割り込みや打ち合わせ、一概に「ダメ」と言ったり、逆にリモートワークさせろと言いはるのは独り善がりだ。今チームがおかれているフェーズおよび、最重要なことは何かを考えてみて、それが必要ならそうすれば良い。例えば頻繁な割り込み・打ち合わせがあったとして、それがそもそものアイデアの種を良くするのであれば、聞く耳を持たなくてはならない。これは全体最適か個別最適かの話で、Buildの高速化のみを考えているのはよくある事だ。仮説検証サイクルのボトルネックがBuildにあるならそれでよいが、他にネックがあるならその時Buildを最適化する必要はない。
15. UVPを見つけに行ってるはずなのに、顧客の声を聞いた挙句、既にある何かにたどり着いちゃったパターン
ある病気の患者は医師に宣告を受けてから自分の治療法を決めるまでに時間が無く、ツテも無く、お金も無く、落ち着いてもいないので、セカンドオピニオンサービスが必要なはずだ、という仮説を持った。しかしヒアリングの結果、セカンドオピニオンまでははいらなくて、「みんなは」同じような境遇の人、同じ病状、同じフェーズの人が今何をしているか知りたい、繋がりたい、という事実が得られた。あーあ、じゃあSNSでいいじゃん。となり、UVPが無くなってしまう。 こうなる原因は2つある。アイデアがくそだったパターンと、あーあ、で終わり、次が探れなかったパターンだ。
16. 性能競争パターン
既に世に出ているとある製品に対し「ここが悪い」と思った部分を改善したり「ここが足りない」といった機能を追加で実装するだけで新たな製品を世に送り出すこと。もう少し広義にとらえると、コンテンツのラインナップかもしれないし、パフォーマンスかもしれない。
しかし、その既存製品が改善してきたらどうするのだろうか? 緩やかな性能競争は体力勝負となるため、フォロワー戦略は参入コストが高すぎるのである。
性能競争で勝ちを狙うなら、圧倒的な差をつけるに限る。テクノロジーによって100かかってた労力や時間が1にできたり、数万円だった価格を無料にできる場合などだ。
17. 解決策ありきパターン
ソリューションありきでの考えは全てにおいて失敗しかない。誰の何を解決するのか?がすっとばされた状態だからだ。これはただひらめいただけで、そのまま事業化しよう物なら失敗しかしない。 一方でソリューションが優れている場合もある。研究施設などから発見される発明などだ。その場合は誰の何を解決するのかをしっかり紐付けたい。
18. ○○がそれやったらどーすんのパターン
プラットフォーマーと呼ばれている企業が、同じ領域を、大量の資金でもって上書きしにきたらどうするのか。それに対抗できる状況を作らねばならない。
戦わないですむような戦略 : 市場の再セグメント化を行い、生きる道を探る。
戦うけど優位な状況で戦う : ゲリラ戦。例えばニッチな市場を強力に抑えてしまう。
相手が参入出来ないスペースを狙う : 法的にグレーなゾーンを狙い、プラットフォーマーが自己矛盾起こすような戦略。
先にユーザを掴んで売る : 先行者優位な市場であればユーザ掴んで、プラットフォーマーに事業を売り抜ける。これも選択肢の一つだろう。
まとめ
リーンスタートアップの不確実性やリスクという表現を制約理論からみるとボトルネックと捉えることができる。リーンスタートアップとは事業を進める上でのボトルネックを消して行き、事業のスループットを最大化する、という基本的な話だ。その意味では、リーンキャンバスの項目は、ほんの一部でしかなくて、各種ステークホルダーの意思決定がネックならそこを動かすこともスコープに入れないとならないし、メンバーの熱量がネックならそこも上げないとならない。自分がコミットする範囲やスコープをどれだけ広げるか、といった少し面倒に見えることも、根本を正せばボトルネックを見極め、消していく、というたった1つの事である。
エンジニア向け #マインドフルネス 入門
社内でマインドフルネスの30分ワークショップをやったのでメモとして残しておきます。 本当は長期にわたる研修なので、こんな簡単な話ではありません。
以下の様な禅語があります。
- 調身
- 調息
- 調心
正しい姿勢を保ち、正しい呼吸法で坐禅を組めるようになれば、心身ともに整うという意味です。 このように、本来は、正しい姿勢のとりかたに始まり、さらには、正しい睡眠のとりかたについて、食生活について、などなど、様々なことを学んで実践した上で、やっと調心(マインドフルネス)のフェーズになります。が、今回はそういうの全部すっ飛ばして要素のみを。興味を持った方へのググラビリティを提供するという意味で。
マインドフルネスって何よ。
日本でいうところの「瞑想」になります。ただし、瞑想というとどうしても伝統的な、宗教的な意味あいが入ってしまうのですが、マインドフルネスはそういうのを一旦全部除外して、サイエンスなアプローチで瞑想の効果を科学し、再現可能なものにリビルドしたものになります。なので、ある意味、瞑想の逆輸入にあたります。(ちなみに、ヨガも同じでインドのそれが、いつのまにか、先進国で科学的に意味のあるものと実証されて、いまや日本で女子力を高めるツールになっています。) 最近はGoogle等の先進的なIT企業が、生産性を最大化するための取り組みとして実践しており、実際にGoogleでマインドフルネスの講師をしているかたに全10回くらいの研修をしてもらい教えて頂きました。
マインドフルネスってどういう状態?
感情を自身によるフルマネージドな状態にすること。
そのために感情のイベントハンドラーを脳みそに実装するためのトレーニングが必要。
そして、感情の状態をハンドリングできれば、コントロールすることが可能。
最初に感情の操作の方法。次に、注意のイベントハンドリングについて説明します。
瞑想(呼吸)によって感情をコントロールする
ジョジョの波紋みたいですねwwww
目をつむってもあけててもいいので瞑想する。
ポイントは、姿勢を正すこと(ドローイン)。姿勢が悪いと肺が圧迫され、横隔膜のワークが弱まる。
すると呼吸が浅くなり、呼吸による感情コントロールの効果が弱まる。
瞑想時の呼吸には吸うときと吐くときで下記の効果がある。(血中二酸化炭素濃度に比例)
- 息を吸うとき 交換神経利用 イライラ/ネガティブ/集中(思考は浅いけど突き進むとき)
- 息を吐くとき 副交換神経利用 リラックス/ポジティブ/発散(遠い記憶と遠い記憶がつながる)
これらの時間をコントロールすることで、集中モード、発散モードの スタンスチェンジが出来る。(構えを変えて戦う格闘ゲームみたいwww)
- 息を吐く時間 < 息を吸う時間 集中突撃モード
- 息を吐く時間 > 息を吸う時間 発散クリエイティブモード
試しにやってみよう
- 目をつぶって、息を吸う時間を長め、吐く時間を短めで2〜3分くらい呼吸してみてください。 なにか、焦りのようなハラハラする感覚になりましたか?多分なってますよね。 それが、交感神経を沢山つかっている状態です。
- 逆に、息を吸う時間を短く、吐く時間を長くするとリラックス出来てきます。 これが副交換神経を利用している状態になります。
例えば、数学的な難しい問題をとくとき
最初の問題解決策を洗い出してクリエイティブに考えるときは、まずは 息を吐く時間 > 息を吸う時間 で5分間瞑想し、発散モードに。 解決策が決まり、あとはやるだけになったら、 息を吐く時間 < 息を吸う時間 で集中モードにスタンスチェンジ。
宮﨑駿氏の例が面白い。 どんな映画をつくろうか考えているときは、楽しそうにニコニコしてる。 ただ、作るものがきまったら、終始毎日イライラしている。 そうやって感情(集中・発散)のコントロールをしている。
注意のイベントハンドラーを実装する
次に自分の感情の変化をハンドリングするために、退屈な刺激、小さな刺激へ注意を向ける練習です。 同様に瞑想をしてください。瞑想中は今回は、自分の呼吸回数を数えて見てください。 タイマーで5分くらい時間を区切り、ひたすら呼吸の回数を数えてください。多分、途中で別のことを考えてしまうと思うので、それをハンドリングしてもう一度、呼吸を数えるタスクに強制的に戻してください。これを繰り返すことで、自分の注意をコントロールできるようになります。しかしながら、これはたくさんの練習を要します。今日明日では身につけられません。日々の練習が必須です。 このハンドラーが装着できると、自分の感情の変化もフックできます。
マインドフルネスの3要素
上記のようなことが全てワークしていくと、下記のマインドフルネスの3要素が満たせてきます。
- 感情の制御
I am angry ではなく I feel angry - 注意のコントロール
退屈な刺激に注意を向ける - メタ認知
注意への注意
簡単に以上がマインドフルネス入門編でした。お昼休みにでもやると午後はスッキリまちがいなし!